
Xtremesoft AppMetrics User’s Guide 4-1

Chapter 4

Metrics
This chapter provides detailed information and definitions on the metrics provided by AppMetrics.

What are Metrics

Metrics are the statistical analyses that result from aggregating and correlating instrumentation
events provided by COM+ and the underlying operating system. For example, simple metrics
such as transactions per interval time (transactions/second) or response time for the e-commerce
order entry system can be displayed in real-time or logged for post analysis. Additional metrics
include the percent of CPU and memory usage being attributed to a particular COM+ application,
or .NET Serviced Component application (monitored via COM+ events). More detailed metrics
include every method call made by a particular application during the last 10 minutes.

AppMetrics provides these metrics on an interval basis that is settable for each Application
monitor. Intervals are usually between 10 seconds and one minute (but can be modified by the
user). Events are collected during the interval, analyzed and then output. The information
provided by AppMetrics on an interval basis include:

 Real-time Metrics including transaction counts, transaction response time measured in
milliseconds, transaction counts and timings, component usage counts, package statistics
such as CPU and memory usage, etc.

 Logging of application events including maximum transaction counts during a specific time
interval, transaction begin and end times, method calls on individual components, etc.

How AppMetrics Views the Application

AppMetrics is designed to provide an application view of the important metrics for each COM+
and .NET Serviced Component application running on a single server or a network of servers.
The system is designed to model the construction of the application and show the hierarchy of
detail in application performance that quality assurance and performance analysis professionals
need to monitor. Figure 4-1 shows a typical banking application. At the top of the hierarchy is a
business transaction “Check Cashing”. Cashing a check involves successfully completing the
execution of several transactions. Each transaction uses one or more COM+ components. The
components are executed via calling specific methods to perform the desired operation within
each component.

Xtremesoft AppMetrics User’s Guide

4-2

Figure 4-1 Application Levels

AppMetrics provides an easy framework to view the performance and health of the application.
AppMetrics real-time viewer provides information on:

 COM+, and .NET Serviced Component application metrics such as Teller Application

 Activities metrics such as number of “Cash Check at Teller” transactions that have
completed

 Named Transactions metrics such as “Inquire Account Balance” duration time

 Component metrics such as the number of active components still active at the end of the
last interval

 Method metrics such as every method call which has been called on the “Debit/Credit
component” during the last 10 minutes

Interval Measurements

AppMetrics collects and updates real-time display on an interval basis. Setting the interval is
described in the previous chapter. As events occur, AppMetrics will provide data as to what
occurred in the system during the interval (e.g., 10 credit/debit transactions were executed during
the previous interval), or the state of a metric at the end of the interval period (e.g., when the
interval ended, 7,878K of virtual memory was allocated to the Order Entry package).

 Metrics

 4-3

Metrics Provided by Each AppMetrics Template

Diagnostic Template

MMC Snap-In Display showing CPU, Mem, Virtual Bytes, Fault, Thread, Active, Start, Stop, and
Crash:

Figure 4-2 Display for MTS Packages or COM+ and .NET Applications

Metric Definition Implications

CPU Average % of the CPU that was
consumed by a specific package
or application during the
interval.

CPU usage per package shows the % of CPU
dedicated to a particular business function
while the system is under load. Provides
basis for capacity planning.

Mem Number of virtual pages in use
by a package or application at
the end of an interval.

If the Mem metric grows over time, it
indicates a memory leak in the application.
Use standard memory leak detection tools to
diagnose and fix.

Virtual Bytes The amount of virtual memory
being used for address space by
the package or application.

If the value of this metric increases over
time, it may indicate a memory leak in the
package/application.

Fault The rate in which page faults
occur per second within the
threads of the package or
application. A page fault occurs
when a thread tries to access a
virtual memory page that does
not belong to the process
working set in main memory.

Excessive page faults indicate a poorly
tuned system resulting in slow response
time and system thrashing.

Xtremesoft AppMetrics User’s Guide

4-4

Metric Definition Implications

Thread Number of threads in use by
MTS/COM+ to run.

Large number of threads can be detrimental
to application performance.

Active Number of concurrent
transactions.

Shows number of MTS/COM+/.NET
transactions relative to the amount of CPU,
mem, and page faulting.

Start * Number of times the
package/application was started
during the current monitoring
session.

Operator or other process started the
package/application.

Stop * Number of times the
package/application was shut
down during the current
monitoring session.

Operator stopped the package/application,
or the MTS/COM+/.NET timeout shut it
down.

Crash * Number of times the
package/application was
abnormally terminated during
the current monitoring session.

Abnormal termination shows a component
running within the package has a serious
bug causing the server process to exit.

* This is a cumulative count: If monitoring is restarted, the count is reset to zero.

Table 4-1 MMC Snap-In Display Metric/Definition/Implications

Logging

The Diagnostic template is used to create a monitor that gathers detailed information about
COM+ and .NET Serviced Component applications, all transactions, transaction types, and
components. Packages collect information from the Package/Application Events and Thread
Events and correlate it with information about the Windows process that is associated with the
Server Application.

Transactions and components use the Object, Instance, Thread, Transaction, and Method
Events (optional) to build a set of interval-based metrics.

This information is correlated by the Diagnostic monitor and saved to a log file. Further analysis
of this data can be performed in a variety of ways, including loading the log files into relational
databases. The correlation of this data enables data manipulation using standard relational
algebra.

The outer-most “context” for the monitoring is the monitor itself. The entities that have actual
metrics are arranged in the following hierarchy:

Monitoring template

Packages

Components

 a) Method Calls

 b) Resource Dispensers

All Transactions

Transactions

 Metrics

 4-5

Log Files

AppMetrics logs all of the data and metrics generated by the application monitors and generates
log files with the following names:

 PackageObj

 ActivityObj

 TxnObj

 ObjectObj

 MethodObj

 ResourceObj

 ActtxnObj

 ChkPt

The tables in Appendix A list the columns, datatype and descriptions for the values that are
stored in each of the log files.

A variety of information is recorded in the log files including begin and end times, beginning and
ending high performance counter ticks, computer names, NT usernames, package names,
objectID’s, method names, return status and unique identifiers (UniqueGuid) to correlate log
files. The fields are tab separated for easy parsing or loading into Excel, SQL Server or other
relational databases.

The data in a single log file should be used to calculate such values as event duration on a
specific instance basis or as an average over any interval of time. The event status is also
logged.

By correlating data from multiple log files, many interesting statistics can be determined. For
example, the data in several tables is correlated to find the event duration on a per NT User or
Computer name basis. A time-series re-creation of all the events in a transaction is found by
merging and sorting the data in the TxnObj, ObjectObj and MethodObj log files. Failure analysis
is possible by identifying all the running components at the time of a package shutdown or a
transaction abort.

Event Duration

The duration of any event (package, transaction type, all transactions, component, method, and
resource dispenser) is calculated by subtracting the BeginTime from the EndTime.

For example, to find the duration of a MethodCall use the MethodObj log file and apply the
following algorithm:

Duration in milliseconds = (EndTime – BeginTime)

This formula can be applied to all log files to calculate all event durations.

Further processing of the data can produce average duration, average duration over an interval,
average duration by type, and events per second.

Xtremesoft AppMetrics User’s Guide

4-6

Correlating Event Duration with Other Data

Continuing with the previous example, finding method call duration per specific COM+ Activity
requires correlating several log files. Each row of the MethodObj log file contains a field called
UniqueGuid. This field is unique per transaction and is used to find which Objects, MethodCalls
and Resource Dispensers are part of a particular transaction. The transaction instance is found
by looking up the UniqueGuid in the ActTxnObj log file. Each row in the ActTxnObj log file
contains an ActivityGuid field. This field is unique per activity and is used to reference into the
ActivityObj Log file. Once the ActivityGuid is found in this file the specific method call can be
associated to a specific COM+ Activity. See the following flowchart:

MethodObj ActTxnObj ActivityObj

Figure 4-3 Steps to find NT Username associated with a MethodCall instance.

Transaction Tracking

One of the more interesting data correlations possible is the tracking of the transactions over
time. Since most files contain Begin times, End times and UniqueGuids these files can be
merged and sorted to find the transaction instances. For each row of the TxnObj, ObjectObj, and
MethodObj log file copy the BeginTime, EndTime, and UniqueGuid to a new file or relational
database. Also include information to indicate where the data came from such as TxnObj
TxnGuidProp, ObjectObj clsid, and MethodObj MethodName. Sort the data by UniqueGuid and
BeginTime and the transactions will be listed in the order they were started and each object
creation and method call can be seen on a transaction-by-transaction basis.

Failure Analysis

The ChkPt log file contains information related to package crashes and transaction aborts.
Whenever either of these failures occurs a record containing the time, crash type and
GeneratedChkPtID (unique identifier) is written to this file. This GeneratedChkPtID is written to
the PackageObj or TxnObj log file so that further information about the failure can be found. The
unique identifier is also written to the ActTxn log file as the ChkPtRecordID for the purpose of
determining what other packages, transactions, objects, and methods were running at the time of
the failure.

Reports

A set of time-based reports is available by using Microsoft Excel and Microsoft SQL Server
(2005, 2008). See Chapter 5 for details.

Begin Time
End Time
MethodName
….
UniqueGuid

Activity Guid
…….

UniqueGuid

ActivityGuid

……

 Metrics

 4-7

Summary

The examples given are just some of the ways the data in the log files can be interpreted and
used. The rule of correlation is that a field name in one table means the same thing in another
table. Refer to the tables in the Appendices for more information about the fields and their
relative position in the files.

Production Monitors

Figure 4-4 Applications Tab

Display Metrics

AppMetrics provides metrics for All Transactions, Transaction, Component usage counts and
rates in near real time. Metrics are reported for the duration of the monitoring session (i.e., since
the monitor was turned on and started collecting metrics about the application). To understand
the numbers, examine Figure 4-5 to see how different transactions are accounted for and
reported by AppMetrics.

Figure 4-5 shows how transactions execute. AppMetrics collects metrics that result from events,
which occur:

 Since the start of the monitoring session (labeled “This Session”)

 Since the start of the monitoring interval (labeled “Last Interval”)

The values displayed are calculated and reported at the end of each interval.

Xtremesoft AppMetrics User’s Guide

4-8

Figure 4-5 Transactions Diagram

In Figure 4-5, Transaction 1 starts in Interval 1 and completes in Interval 2. Transaction 2 starts
and ends in Interval 2 and Transaction 3 starts in Interval 2 and ends in Interval 3. Note that we
could apply a similar structure for All Transactions and Components as well.

The control for the Production monitor contains the same Applications tab as that found in the
Diagnostics monitor. Please refer to the Diagnostics section for details on the data provided.

 Metrics

 4-9

All Transactions Metrics

AppMetrics measures transactions that are units of work initiated by a client and either
successfully completed by COM+ or abnormally terminated due to an error or problem in the
system. It is important to note that monitoring and measuring transactions is different from
database transactions. For example, a single user transaction may in fact execute multiple
database transactions.

Figure 4-6 All Transactions Tab

The All Transactions tab is a real-time display for the Transaction data. “This Session” indicates
the number of transactions that have occurred during the current session. The data for Minimum
and Maximum are cumulative for the session. Data is updated according to a specified interval
(usually 10 seconds). The data will start to be logged after the first interval has been completed.
The data in the “Last Interval” section are the values that correspond to the last interval. If the
package is no longer active, the numbers will revert to zeros, as the transactions for the last
interval will indicate that no transactions are taking place.

Metric Definition Implications

This Session Metrics collected since a specific
monitor was started.

Current Number of transactions of all types
that are currently active.

Indicates current transaction load on the
system. Use this to match against
anticipated transaction load for a
particular workload.

Xtremesoft AppMetrics User’s Guide

4-10

Metric Definition Implications

Minimum Minimum number of transactions of
all types that was concurrently
active since the monitor was
started.

Indicates minimum number of
component transaction concurrency.

Maximum Maximum number of transactions of
all types that was concurrently
active since the monitor was
started.

Indicates maximum components
transaction concurrency.

Last Interval Metrics collected during the time
interval

Active: Begin Number of transactions of all types
active at the start of the interval

Provides reference point for number of
transactions begun at start of an interval
against number completed and aborted.
Across a load balanced system, number
of begin transactions should be
reasonably steady across all systems
over several intervals indicating a steady
state.

Active: Minimum Minimum number of concurrently
active transactions of all types
active during the interval

Active: Maximum Maximum number of concurrently
active transactions of all types
active during the interval

Used to determine how far the current
transaction load is above or below the
desired benchmark

Started Number of transactions started in
an interval

Completed Number of transactions completed
in an interval

Aborted Number of transactions aborted in
an interval

Rate per sec:
Started *

Rate of transactions started in an
interval

Arrival rates of work coming into system.

Rate per sec:
Completed *

Rate of transactions completed in
an interval

Rate for completed transactions is a
measure of work completion rates on the
system.

Rate per sec:
Aborted *

Rate of transactions aborted in an
interval

High abort rates indicate system or
database problems

* Rate per second is the number divided by interval size in seconds.

Table 4-2 All Transactions Display Metrics

 Metrics

 4-11

Transactions Metrics

Figure 4-7 Transactions Tab

Metric Definition Implications

This Session Metrics collected starting from the
time when the monitor was started.

Current Number of transactions of the
selected type that are currently
active during the last reported
interval.

Minimum Smallest number of transaction
instances that ran simultaneously
since the monitor started.

This may in fact be zero since
there may not be any transactions.
If Minimum is greater than
expected, investigate application
code.

Maximum Largest number of transaction
instances that ran simultaneously
since the monitor started.

Transactions represent time and
resources used while a client (e.g.,
Web server or VB application)
remains connected to a thread in
an MTS package or COM+, .NET
application. Long durations means
less thread sharing.

Xtremesoft AppMetrics User’s Guide

4-12

Metric Definition Implications

Last Interval Metrics collected during the time
interval.

Begin Number of transactions started
during the interval.

Indicates the start of new “work”
to be performed by the system.

Minimum Minimum number of active
concurrent transactions of the
selected type during the interval.

If minimum is lower than
expected, users are initiating work
for execution.

Maximum Maximum number of active
concurrent transactions of the
selected type during the interval.

Indicates the maximum number of
users which are active and using a
packages thread for component
execution.

Duration:
Average
(First column)

Average duration (in milliseconds)
for completed instances of the
selected transaction type during the
most recently completed interval.
These transactions may have
started during the interval or any
prior interval.

It represents the average time that
a package/application thread is
being held by a user. Long durations
indicate poor thread sharing in the

package.

Yellow indicates a warning level,
while red indicates a notification
level. To set the thresholds for the
warning and notification levels, see
the Transaction Configuration Panel
section in Chapter 3.

Average time an MTS package’s or
COM+, .NET application’s thread is
being held by a user. Long times
indicate poor thread sharing in the
package.

Duration:
Average
(Second column)

During the interval, this is the
average aggregate duration (in
milliseconds) that an instance and
its sub-objects spent using DTC
transaction resources. The duration
is cumulative for both the instance
and its sub-objects. Calculated only
for instances completed during the
interval.

Duration:
Minimum
(First column)

The shortest duration (in
milliseconds) for any of the
completed instances of the selected
transaction type. Pertains to
transactions during the most
recently completed interval. The
instance may have started in the
interval or in an earlier interval.

Indication of the minimum time a
thread is held.

 Metrics

 4-13

Metric Definition Implications

Duration:
Minimum
(Second column)

Time in milliseconds that a specific
instance and its sub-objects spent
using DTC transaction resources.
The instance in question had the
following traits:

 The instance ended during the

interval.
 The combined duration that

the instance and its sub-
objects spent using DTC
transaction resources is
smaller than the combined
durations of the other
instances and their sub-
objects.

Note: This aggregate DTC duration
can be longer than the instance’s
duration. One way in which this can
occur is when the instance spent its
entire duration using a DTC
resource, and its sub-object spent
some time using a separate DTC
resource. The combined duration of
both items using DTC resources is
longer than the duration of the
instance itself.

Duration:
Maximum
(First column)

The longest duration (in
milliseconds) for any of the
completed instances of the selected
transaction type. Pertains to
transactions during the most
recently completed interval. The
instance may have started in the
interval or in an earlier interval.

Indication of the maximum time a
thread is held.

Duration:
Maximum
(Second column)

Time in milliseconds that a specific
instance and its sub-objects spent
using DTC transaction resources.
The instance in question had the
following traits:

 The instance ended during the

interval.
 The combined duration that

the instance and its sub-
objects spent using DTC
transaction resources is
longer than the combined
durations of the other
instances and their sub-
objects.

Note: This aggregate DTC duration
can be longer than the duration of
the instance itself. See the note for
the “Duration: Minimum (Second
column)” metric above.

Xtremesoft AppMetrics User’s Guide

4-14

Metric Definition Implications

Started Number of started instances of the
selected transaction type in an
interval.

Completed Number of completed instances of
the selected transaction type in an
interval.

Aborted Number of aborted instances of the
selected transaction type in an
interval.

Rate per sec:
Started *

Rate of started instances of the
selected transaction type in an
interval.

Rate per sec:
Completed *

Rate of completed instances of the
selected transaction type in an
interval.

Rate per sec:
Aborted *

Rate of aborted instances of the
selected transaction type in an
interval.

* Rate per second is the number divided by interval size in seconds.

Table 4-3 Transactions Display Metrics

 Metrics

 4-15

Component Metrics

Figure 4-8 Components Tab

Metric Definition Implications

This Session Metrics collected since a specific monitor was
started.

Current Number of components of the selected type that
are currently instantiated.

Minimum Minimum number of component instantiations of
a specific type that are active since the monitor
was started. The low water mark for component
instantiations across all intervals.

Maximum Maximum number of component instantiations
of a specific type that are active since the
monitor was started. The high water mark for
component instantiation across all intervals.

Last Interval Metrics collected during the time interval

Active: Begin Number of component instantiations active at
the start of the interval.

Xtremesoft AppMetrics User’s Guide

4-16

Metric Definition Implications

Active:
Minimum

Minimum number of concurrently active
components of the selected type during the
interval.

Active:
Maximum

Maximum number of concurrently active
components of the selected type during the
interval.

Duration:
Average

Average time duration that a component
instantiation of the selected type was active
(measured in milliseconds).

Duration:
Minimum

Minimum time duration of a component
instantiation (measured in milliseconds) of all
the components of the selected type whose
instantiations ended during the interval
regardless if they started in the interval or not.

Duration:
Maximum

Maximum time duration of the selected
component instantiation (measured in
milliseconds) of all the components of the
selected type whose instantiations ended during
the interval regardless if they started in the
interval or not.

Started Number of instances of the selected component
type started in an interval.

Completed Number of completed instances of the selected
component type in an interval.

Aborted Number of aborted instances of the selected
component type in an interval.

Rate per sec:
Started *

Rate of instances of the selected component
type started in an interval.

Rate per sec:
Completed *

Rate of completed instances of the selected
component type in an interval.

Rate per sec:
Aborted *

Rate of aborted instances of the selected
component type in an interval.

* Rate per second is the number divided by interval size in seconds.

Table 4-4 Components Display Metrics

 Metrics

 4-17

Log File Metrics Production Template

Figure 4-9 Log File Tab

The AppMetrics Production template generates log files with the following names:

 Package

 AllTransactions

 Transactions

 Component

The tables in Appendix B list the columns, data types, and descriptions of the values that are
stored in each of these log files.

Xtremesoft AppMetrics User’s Guide

4-18

	Chapter 4
	Metrics
	What are Metrics
	How AppMetrics Views the Application
	Interval Measurements
	Metrics Provided by Each AppMetrics Template
	Diagnostic Template
	Logging
	Log Files
	Event Duration
	Correlating Event Duration with Other Data
	Transaction Tracking
	Failure Analysis
	Reports
	Summary

	Production Monitors
	Display Metrics
	All Transactions Metrics
	Transactions Metrics
	Component Metrics
	Log File Metrics Production Template

